Barcelona

Supercomputing EXCELENCIA
OCHOA

Centro Nacional de Supercomputacion i)

Application
programming

on parallel/distributed
computing platforms

Daniele Lezzi - BSC

Training week - Munich

Outline

* Programming parallel and distributed computing platforms: an
overview

e Programming in PyCOMPSs/COMPSs

e Resource management and COMPSs Runtime

b,] 2

FERMTTERAENT

ooy

Bermn fen wewl s S e i

Challenges

HOW DOES COMPUTER
PROGRAMMING LJORK ?

MAGIC .

Computation platforms

 New architectures and organization of processors

* Multicore P

* Including vector units @
e GPU/accelerators il
* FPGAs

e Shift on programming
paradigms:
 From sequential to parallel
* New instructions/languages

e Computing paradigms:
* From Clusters, through Grids, to Cloud

b o i
e S g S eI L 4

Why is difficult to program distributed
environments?

e Gap between traditional way of programming and actual
hardware
e Multicore
* Heterogeneity
e Distribution
* Multiple nodes

e Distributed memory systems
* Manifold middleware to manage the resources (cloud, containers, ...)

e A lot of applications are thought sequential and for shared
memory and then ported to distributed environments

b,] A

FERMTTERAENT

ooy

Bermn fen wewl s S e i

BSC vision on programming models

Bermn fen wewl s S e i

Program logic
agnostic of

computing platform

High-level,

clean,

abstract interface

Performs

optimizations,
parallelization,
data management

EXCELENCIA
Barcelona SCHOs
Supercomputing
Center
Centro Nacional de Supercomputacion

Review of related approaches

Overview of parallel programming models

e Traditional HPC distributed parallel programing
* MPI

e Big-data programming
 MapReduce
e Spark

e Task-based programming

Chial i hin
B roourmmatien

ooy
Bermn fen wewl s S e i

Message passing

MPI is the largest used standard
 MPI is an industry standard model for parallel programming

* A large number of implementations of MPI exist (both commercial and
public domain)

e Virtually every system in the world supports MPI
e Based on explicit communication between processes

e Processes may have multiple threads sharing a single address
space. MPI is for communication among processes, which have
separate address spaces

e |nter-process communication consists of

e Synchronization
* Movement of data from one process’s address space to another’s.

-

S oD

ooy

Lorin e we el ide B i

Message passing

e Explicit calls to MPI interface
e Simple code for two processes that sends/receives the data buffer

{

}

#include <mpi.h>
#include <stdio.h>
int main(int argc,

char ** argv)

int rank, datal[100];
MPI Init (&argc, &argv) ;

MPI Comm rank (MPI COMM WORLD, &rank) ;
if (rank == 0)

MPI_Send(data, 100, MPI INT, 1, O, MPI_COMM_WORLD);
else if (rank == 1)

MPI Recv(data, 100, MPI_INT, 0, 0, MPI_COMM WORLD,

MPI STATUS IGNORE) ;
MPI Finalize();
return 0O;

e How to run an MPI application:

mpirun -np 2 hello

Suwee '

[de i

By

Come ey ' ol Soparcusrputy il

10

MapReduce

The MapReduce algorithm contains two important tasks: Map and
Reduce

 The Map task takes a set of data and converts it into another set of data,
where individual elements are broken down into tuples (key-value pairs)

 The Reduce task takes the output from the Map as an input and combines
those data tuples (key-value pairs) into a smaller set of tuples

The reduce task
is always performed
after the map job

Basic data structure:
key-value pairs

Storage: Hadoop
Distributed File
System (HDFS)

Chial i hin
B roourmmatien

ooy
Bermn fen wewl s S e i

MapReduce

e WordCount example

public void map (Object key, Text value, Context context) throws
IOException, InterruptedException
StringTokenizer itr = new StringTokenizer (value.toString()) ;
while (itr.hasMoreTokens ())
word.set (itr.nextToken ()) ;
context .write (word, one) ;

public void reduce (Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException

int sum = 0;

for (IntWritable wval : wvalues)

{
}

result.set (sum) ;
context.write (key, result) ;

sum += val.get () ;

}

TINTEE LI NS N B G pARRR AR L

12

MapReduce

e WordCount example

job.setReducerClass (IntSumReducer.class) ;

System.exit (job.waitForCompletion (true) ?

job.setMapperClass (TokenizerMapper.class) ;
job.setCombinerClass (IntSumReducer.class) ;

0

bl s
Come ey ' ol Soparcusrputy il

13

Programming with Spark

e Sequential programming
e General purpose programming language + operators

e Main abstraction: Resilient Distributed Dataset (RDD)

* Collection of read-only elements partitioned across the nodes of the cluster that
can be operated on in parallel

e Operators transform RDDs
* Transformations
e Actions

e Simple linear address space
e Builds a DAG of operators applied to the RDDs

e Somehow agnostic of computing platform
* Enabled by the runtime for clusters and clouds

e Uses also HDFS

Spark
Streaming

- Mesos I Standalone
arceFann
Sunarpmmetieg

Spark SQL & ,
Databraies | MLIib ‘ GraphX

Gonfor
Bermn fen wewl s S e i

HBase | S3

Spark
e Sample WordCount code in Scala

JavaRDD<String> file = sc.textFile (inputDirPath+"/*.txt");
JavaRDD<String> words = file.flatMap (new FlatMapFunction<String, Strings>() {
public Iterable<String> call (String s) {
return Arrays.asList (s.split(" ")) ;
}
1)

JavaPairRDD<String, Integers
pairs = words.mapToPair (new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer> (s, 1);
}) i

JavaPairRDD<String, Integers
counts = pairs.reduceByKey (new Function2<Integer, Integer, Integer>() ({
public Integer call (Integer a, Integer b) {
return a + b;
}) i

counts.saveAsTextFile (outputDirPath) ;

T T

S oD

ooy

Lorin e we el ide B i 1 5

Task-based programming models

e The task is the basic unit for parallelism. Receives inputs,
computes, generates outputs

e An application is composed of tasks

e Tasks can run in parallel

e When data dependencies are considered, a task can only be executed
once its input parameters are available

e Examples:
e OpenMP from version 4.0
e StarPU
e StarSs: OmpSs and PyCOMPSs/COMPSs

b,] A

FERMTTERAENT

ooy

Bermn fen wewl s S e i

16

Introduction to PyCOMPSs/COMPSs

So, what is a superscalar programming
model?

e High-level sequential programming

Executes following superscalar processor model
e QOut of order
e Task is the unit of work

Builds a task graph at runtime that express potential
concurrency

e Large number of in-flight tasks

e Exposes distant parallelism

High level
C

e Based on a runtime §

pre
 Makes decisions and executes the
task-graph
e Offers an abstraction to “plug”
applications to different resources
e Computing
* Storage

Datafic Utilities

b,] A

FERMTTERAENT

ooy

Bermn fen wewl s S e i

Main elements of superscalar programming
model syntax

e Superscalar program
e Sequential code
e Single shared memory space
 |dentification of tasks

e Task
e Main element of programming model: computation unit
e Operates in given parameters and local variables

 Amount of work (granularity) may vary in a wide range (from psecs, to
minutes, hours), may depend on input arguments,...

e Once started executes to completion independent of other tasks

* Syntax
e Task annotations
e Task arguments directionality
e Synchronizations

B 2
I
Bermn fen wewl s S e i 19

The StarSs family

StarSs
e

OmpSs PyCOMPSs/COMPSs
— O\

@ SMP @ GPU @ Cluster

Average task Granularity:

100 microseconds — 10 milliseconds 10 ms -1 day

Address space to compute dependences:

Memory Files, Objects, NVMs
Language bindings:

C, C++, FORTRAN Java, C/C++, Python
@m"ﬁ__ SMPs, Clusters Clusters, Clouds

i M o Soreeovinin ﬁ

20

Programming with
PyCOMPSs/COMPSs

Sequential programming

General purpose programming language + annotations/hints
* To identify tasks and directionality of data

Task based: task is the unit of work
Simple linear address space

Builds a task graph at runtime that express potential concurrency
e Implicit workflow

Exploitation of parallelism
e ...and of distant parallelism

Agnostic of computing
platform
* Enabled by the runtime

for clusters, clouds and
grids

- “ﬁ,
__t?)g.'.zg,ﬂ.u,ﬂz)mﬂ
_ =i

Dw @ Prhasing
By -] Pre-imputation Imputation uality filtering
Bermn fen wewl s S e i filterin - .
. 9 0 Post-imputation () Data merging
° ummary statistics

Filtering

h—

PyCOMPSs

ol compss
* Based on regular/sequential Python code Main Program
e Use of decorators to annotate tasks
and indicate arguments directionalit 23t@_ = lblockl, block2, .., blockN]
result=defaultdict (int)
e Other annotations: constraints for block in Data:
presult = word count (block)
* Small API for data synchronization reduce_count (result, presult)
finalResult = compss wait_on (result)

Tasks definition

@constraint (ProcessorCoreCount=mkl threads)
@task (returns=dict)
def word count (collection) :

@task (dict 1=INOUT)
def reduce count (dict 1,
dict 2):

Chial fainhin
Fonreonrnmetien

By
Come ey ' ol Soparcusrputy il

22

PyCOMPSs Syntax

e Python decorators:

from pycompss.api.task import task

The decorator is used
to indicate that the

--- " function is considered a

task definition

Each call to the function

will be considered as a
. L[]
API: task call
if name == ' main '
from pycompss.api.api import compss wait on The APl is used

do some task calls

compss wait on(something) °

to indicate that

...... a

synchronization
IS requested

Suwee '

[de i

By

Come ey ' ol Soparcusrputy il

23

PyCOMPSs: Task definition

e Task definition with Python decorators

e Provide information about task parameters (TYPE_DIRECTION):
* Type
e Only mandatory for files
* Inferred for the rest of the types
* Direction
e Default IN (read-only)
e Mandatory for INOUT (read-write) and OUT (write-only)

i .- explicit type and direction
type inferred ~._ P yp

e o
@task(a = INOUT, b = FILE OUT)

def my func(a, b, c¢):
e

\ type inferred, default direction (IN)

Suwee '

[de i

By

Come ey ' ol Soparcusrputy il

24

COMPSs Java

Binary invocation
Annotated Interface y
public interface BlastItf ({
@Binary (binary = "${BLAST BINARY}”",

constraints = @Constraints (computingUnits = “1”))
) <«

Integer align(

Task constraints

@Parameter (type = Type.STRING, direction = Direction.IN) String pFlag,
@Parameter (type = Type.STRING, direction = Direction.IN) String pMode,
@Parameter (type = Type.STRING, direction = Direction.IN) String dFlag,
@Parameter (type = Type.STRING, direction = Direction.IN) String database,
@Parameter (type = Type.STRING, direction = Direction.IN) String iFlag,
@Parameter (type = Type.FILE, direction = Direction.IN) String partitionFile,
@Parameter (type = Type.STRING, direction = Direction.IN) String oFlag,
@Parameter (type = Type.FILE, direction = Direction.OUT) String partitionOutput
i
@Mgthod(declaring(?lrftss = "blast.BlastImpl") o Regu|ar method
void assemblyPartitions (
@Parameter (type = Type.FILE, direction = Direction.INOUT) String partialFileA,
@Parameter (type = Type.FILE, direction = Direction.IN) String partialFileB

>} / S——__ Parameter

metadata

Main code

for (int i = 0; i < numAligns; i++) {
exitValues[i] = BINARY.align (pFlag, pMode, dFlag, Blast.databasePath,
iFlag, Blast.partialInputs.get (i), oFlag,
Blast.partialOutputs) ;
BlastImpl.assemblyPartitions (Blast.Output, Blast.partialOutputs) ;

—

ot e o Sopwr et il 2 5

PyCOMPSs: Application Example ()

* Transpose N 2D matrices | def transpose (matrix) :

result = [list(a) for a in zip(*matrix)]

e Accumulate them return result

def add(matrixl, matrix2) :

import random for x in range(len(matrixl)) :

random. seed (5) for y in range(len(matrix1[0])) :
X = 100 matrixl [x] [y] += matrix2 [x] [y]

if name == ' main ':

Y = 100

min = 0

max 1000

numMatrices = 500

partialResult = [[0 for x in range(X)] for y in range(Y)]

for i in range (numMatrices) :
matrix = [[random.randint (min, max) for x in range(X)] for y in range(Y)]
transposed = transpose (matrix)
add (partialResult, transposed)

print partialResult

Chial fainhin
Fonreonrnmetien

Comie Py ' ol Sopaeenrrput 2 6

PyCOMPSs: Application Example (ll)

from pycompss.api.task import task

i Transpose N 2D matrices from pycompss.api.parameter import *

° Accumulate them @task (returns = list)
def transpose (matrix) :
. . result = [list(a) for a in zip(*matrix)]
if name == "' main_':

. . return result
from pycompss.api.api \

import compss wait on
import random
random. seed (5)

@task (matrix1=INOUT)
def add(matrixl, matrix2) :
for x in range(len(matrixl)) :

X = 100

v = 100 for y in range(len(matrix1[0])) :
min - 0 matrixl [x] [y] += matrix2 [x] [y]
max = 1000

numMatrices = 500

partialResult = [[0 for x in range (X)] for y in range(Y)]

for i in range (numMatrices) :
matrix = [[random.randint (min, max) for x in range(X)] for y in range(Y)]

transposed = transpose (matrix)
add (partialResult, transposed)

result = compss wait on(partialResult)
print result

...... o
w Coriea e o Spareeerpua vl 2 7

PyCOMPSs: Application Example (lil)

e Each matrix transpose is performed in parallel
e The result is accumulated in matrix1

 The synchronization is performed only with the accumulated

variable

- transpose

b o i
e S g S eI L 2 8

Programming methodology

e Tasks are the basic unit of parallelism
e Finding tasks
* What can be a task?
* Piece of computation with enough granularity

e Potential for concurrency with other tasks
* Enabler for more concurrency or tasks generation -> avoid bottlenecks

i
W#

z

Hovon rooqredien
Bermn fen wewl s S e i

29

General approach for development

Right now, no debugger available

Methodology first Step: run serial
* 1 single worker, 1 single task
e Add extra synchronization points (barrier)

Incrementally remove barriers and/or add worker tasks

Task based monitoring
* Visualize graph
* Monitor execution of application in the different resources

Several levels of logs
* Info — generates information about file transfers and tasks execution

* Debug — generates same information as Info level, but with much more level of
detail

e Off - nologs, only errors are reported

* Tracefile visualization and analysis - Requires that the execution finalizes

e Can help detecting unusual behaviors: Tasks being serialized, Unexpected
synchronizations...

b,] A

FERMTTERAENT

ooy

Bermn fen wewl s S e i

30

COMPSs runtime

PyCOMPSs runtime

e Sequential execution starts in master node
e Tasks are offloaded to worker nodes

e All data scheduling decisions and data transfers performed by

runtime
TDG

! |
e R i, i AR
Tl] B =

filtering
g Post-imputation
Filtering

wality filtering
merging

7y Summary statistics
usters

Language Clouds
bindings

COMPSs Runtime

32

COMPSs Overview - Runtime System

e Application architecture

Master

COMPSs COMPSs

Runtime Worker

Hovon rooqredien
Bermn fen wewl s S e i

33

COMPSs Overview - Runtime System

Componentized
Adaptable
Extensible
Interoperable

Each component
responsible
of a specific task

Task generation
* Dependence analysis
* Generation of task graph

Task scheduling
e When?
e To which resource?

Data management
e Where is the data?
* Transfer of data

bl s
Come ey ' ol Soparcusrputy il

C/C++ App Python App
Java App
Bindings-common
COMPSs Runtime
V
Loader

COMPSs API

ConfigLoader

Engine Resources

Access Processor Resource
Manager

Task Dispatcher
Resource

Monitor Executor Optimizer

Connectors
Comm

Adaptors
Adaptoré P rOVid e .

>

Clusters

<4
SIS
SR
<.
Clouds docker

34

COMPSs Overview - Runtime System

Access pProcessor

e Performs data
management

e Knows where data is

Task dispatcher
e Schedules tasks
* Finds dependencies
* Adds tasks to task-graph
» Updates task-graph

Monitor executor
* Monitors execution
at real-time
Resource optimizer

* Decides on creation of
new machines

e Cloud only

bl s
Come ey ' ol Soparcusrputy il

Adaptors

_ Sr— D
T <
__ Nl V-

Clusters Clouds docker TS

C/C++ App Python App

\

Resources

Java App

Bindings-common

COMPSs Runtime

vV
Loader

ConfigLoader

COMPSs API
Engine

Resource
Manager

Access Processor

Task Dispatcher
Resource

Monitor Executor Optimizer

Connectors

VAVAVY

Runtime System

Application

Task Selection Interface

How do | select the
execution platform?

' amazon)
webservices™

Cluster Cloud

COMPSs Execution Environment

Infrastructure Description

* Describes the available resources in
the infrastructure

e Describes Cloud Providers: Images
and VM Templates

2

resources.xml|
Adaptors Resources
— 7
Network adaptors Cloud connectors
[] [] project.xml
y

e S g S eI L 3 7

COMPSs Execution Environment

Application Execution Description
 Selection of resources

* Application Code Location

* Working directory

Adaptors

Network adaptors

[

J |

J

Resources

Cloud connectors

burces.xml

B

project.xml

4

Bermn fen wewl s S e i

38

COMPSs Execution Environment

and Grid Middleware

Master-Worker Communication Mechanism
e GAT: Restrictred environments (only ssh access)

* NIO: Efficient Persistent workers implementation
e Controlled and secured environments

/

Adaptors

Network adaptors

J |

J

Resources

Cloud connectors

resources.xml

4

project.xml

4

Bermn fen wewl s S e i

39

COMPSs Execution Environment

Resource Scalability

jClouds: access to most of commercial public
clouds

rOCCI: OGF standard

Extensible (support others..), CIMI in mF2C?

Adaptors

Network adaptors

[

J |

J

Resources

resources.xml

4

Cloud connectors

project.xml

4

Bermn fen wewl s S e i

40

COMPSs in remote hosts (interactive)

e Typical setup:
e Master node: main program (+ master runtime) '
 Worker nodes: tasks (+ worker runtime) Wor‘lf<ers

Described by resources.xml files

App main program

COMPSs Master runtime

Network Adaptor

Master

Fod oot
Forr e R E AT S A 4 1

Constraints matching

e Constraints matching mechanism
e Enables to choose the optimal resource for each task type

e Applications describe constraints with constraint interface

* The resources description indicates resources available in each
host

e Runtime does the matching before doing scheduling

b,] 2

FERMTTERAENT

ooy

Bermn fen wewl s S e i

42

Constraints matching examples

Python decorator

@constraint (ComputingUnits=%"8")
@task (A=INOUT, priority=True)
def potrf (A):

Java annotations A.dpotrft (lower=True)

@Method (declaringClass = "matmul.files.MatmulImpl")
@Constraints (memorySize="${MIN MEM REQ}")

Integer multiplyAccumulativeNative (
@Parameter () int bsize,

Resource.xml e

<ComputeNode Name=“172.20.200.18">
<Processor Name="P1">
<ComputingUnits>4</ComputingUnits>
<Architecture>amd64</Architecture>
<Speed>3.0</Speed>
</Processor>
<Memory>
<Size>256.2</Size>
<Type>Non-volatile</Type>
</Memory>
<Storage>
<Size>2000.0</Size>
</Storage>
<OperatingSystem>
<Type>Linux</Type>

43

COMPSs in a Cluster (with job scheduler)

e Execution divided in two phases
e Job-submission of a whole COMPSs app execution — runcompss
* Project.xml and Resource.xml generated automatically
e Application execution when allocation is obtained

Cluster Login Node enqueue_compss.sh

Cluster / o B \ 4 I
Compute B - Q

Nodes =~ N project. U Df

xml \

resources.xml [+

Application J Y,

Cloud Connector
/ 4

S
B ru k
Errp fey mont gy Bopreen,

COMPSs in Clouds

e Execution of COMPSs applications in Clouds
e Select de connector to interact with the Cloud provider

e Adaptor to communicate VMs (NIO if provider supports firewall
management, GAT if only ssh)

Create/delete
VMs

\
\
\
\
\
\
\
\

\
\
\

¥

Provider
API

45

Elasticity in clouds

e CIC++ App Python App
N » Bindings-common _
* Acces processor / | COMPSs Runtime | \
* Assigns tasks to VMs or physical resources e |
i ReSOU rce ma nager Engine Resources
* Holds resources information (workers and cloud e i
p rovi d e rs) Task Dispatcher

Resource
Optimizer

e For each Cloud provider, a data structure stores
the different available instances (with its features)
and the connector that should be used Adaptors

e Knows usage of resources comn

e Dynamic information 'A' aptors

* Resource Optimizer \
e Checks status of workers
e Can decide

e To perform load balancing

* To create/destroy new VMs
e Sends to Resource Manager requirements about new VM characteristics
* Evaluates the cloud providers alternatives and chooses the best option

* More economic

* The decision can be to open a new private or public VM

Monitor Executor

Connectors

b o i
e S g S eI L 46

Cloud bursting

* Increase/decrease number of VMs depending on task load

e Bursting to Amazon EC2 to face peak load

80

task load (minutes}
-9
[=]

Total

- - blast
— genewise
- mergeGenewise |

30
20
)
n L lI""--.. z i L
30 40 50 60 70
time (minutes}
5 T T 1 1 '
] : ' . -~ Total
i ! i ; — Private
4 :' i S 1 Amazon [
1 : :
: | - :
£3r
o
=
",
#
1
m 05 10 20 30 40 50 60 70
Contar time (minutes}
Bern fe we s ST i

47

SLURM Connector (expand)

SLURM Job X (expanded)

SLURM Job X (initial)

Master Node
A ta Nlada SLURM Job Y (extra nodes)

Nacanni b~ NS Ada D

Main App
COMPSs Runtime

Compute Node A

COMPSs Worker

@ @ Compute Node N
COMPSs Worker
SLURM Connector @ @

1. sbatch --dependency=expand:X -N1 —n.. --mem=..

2. Squeue - Y (Requests a new node)

(check job Y status)

2b. SLURM creates the new job

3. scontrol update Jobld=X NumNodes=ALL ...
(update original job properties)

SLURM Manager

SLURM Connector (reduce)

SLURM Job X (expanded)

SLURM Job X (initial)

Master Node
A fa Rlada SLURM Job Y (extra nodes)

Nacnniidba NS D

Main A
— Compute Node A

COMPSs Runtime
COMPSs Worker

@ @ Compute Node N
COMPSs Worker
SLURM Connector @ @

1. scontrol update Jobld=XX NumNodes=(all except N) (update original job properties)

2. scancel Y (Cancel Job in node N)
3. SLURM removes the extra job

SLURM Manager

Support for MPI tasks

e Extension of interface

e Resource manager aware of multi- node tasks

@MPI (mpiRunner = “mpirun”,

binary = “mpiBinary”,

computingNodes = “27,

workingDir = “/tmp/”,

priority = “true”,

constraints = @Constraints (computingUnits = “4"))
void mpiTask () ;

COMPSs COMPSs
Worker Worker

COMPSs
Worker

COMPSs
Master

Task clll el cl' ‘cu Gl el

Dispatcher

Cu CuU Cu Cu Cu Cu

\4
T1 (1 CU) e

T1 (1 CU)
—_—

COMPSs

Worker

CuU CuU

CuU CuU

T41(2CU) T42(2CU) T4.2

(2 cu)

T2 (2 CU)
—_——eeeee T

T3 (4 CU)
—————————

Boji ol e B T4 (3CN x 2 CU)
Come ey ' ol Soparcusrputy il

50

COMPSs with Docker

* Keep as transparent for the user as possible

e Same as running a local COMPSs application (runcompss command)

® runcompss container

-—engine=docker ——engine-manager ='129.114.108.8:4000 * ——initial -worker-containers=5
——container image="john123/matmul-example ’ ——classpath=/home/john/matmul/matmul. jar matmul. objects .Matmul 16 4

* Deploy applications as a set of docker container

COMPSs Image

{ cﬁupg;]

ubuntu®

App. Image

DockerHub

Application

Docker Compose

\ 4

Docker Swarm

runcompss_docker

Sl i Farai
il]

By
Come ey ' ol Soparcusrputy il

]

/Docker Nodes

&

S——

L docker docker docker docker)

51

COMPSs with Mesos

e The COMPSs runtime register itself as a Mesos Framework and negotiates the use
of resources with the Mesos Master.

* The number and type of nodes requested depends on the actual load.

e Both the COMPSs Master and the workers are executed in Docker containers,
managed by Mesos, thus allowing a completely
«q

/

.. R

transparent deployment of the applications. sg Mesos Slave
5

S

COMPSs Worker

*». Mesos Slave -

R

K

hP /

* COMPSs Master \\

Mesos
Framework

T8
'« Mesos Slave
oK
>

\ 4

SN

COMPSs Worker

52

S

COMPSs development environment

* IDE graphical interface
e Runtime monitor

e Paraver traces

COMPSs environment: IDE

(t Graphical interface to help £ > (@ e S—————
developers with COMPSs A bt
applications e

— Annotation of main program and
tasks

— Generation of project and
resources files (xml)

— Deployment in the infrastructure
(€ Developed as a Eclipse plugin

— Available in the Eclipse _
marketplace

D | com s mage - e EBE b Fitrs e
? Cancal

http://marketplace.eclipse.org/content/comp-superscalar-integrated-development-environment

16

COMPSs enviroment: trace generation COMPSs environment: Runtime Monitoring

(t Automatic generation of Paraver tracefiles
(t Paraver is the BSC tool for trace -
visualization i

— Trace events are encoded in Paraver (.prv) [,
format by Extrae

— Paraver enables different views and of a trace

N NN SRS 0 SN SO N G N R | S -y

18

Pt Tt Samr g M s ©

(The runtime of COMPSs provides some information at execution
time so the user can follow the progress of the application:
— Real-time monitoring information (http://localhost:8080/compss-
monitor/)
o #tasks
* Resources usage information
« Execution time per task
* Real-time execution graph

=
°

Sarvicats Task Momner

0000000000000000

T ¢ A L}

L J

17

53

New challenges

 New challenges in distributed computing

e Dynamic workflows

* Integration with novel storage technologies
* Hecuba/dataClay

* Integration of task-based with traditional HPC programming models
* MPI
* OmpSs
* GPU and FPGAs

e Alternative computing platforms
* Fog to cloud architectures
* Mobile computing

b,] A

FERMTTERAENT

ooy

Bermn fen wewl s S e i

54

Integration with Jupyter notebook

* The Jupyter Notebook is a web application that allows you to
create and share documents that contain live code, equations,
visualizations and explanatory text.

e Uses include: data cleaning and transformation, numerical
simulation, statistical modeling, machine learning and much
more-) ’, Jupyter Lorenz Differential Equations

e Runs Python — 0o (=0 8][x < v [8]c)/GH"10 ormaw e

Exploring the Lorenz System

S e q u e n t i a I . JU pyter P to_P In this Notebook we explore the Lorenz system of differential equations

I=oy—-x)
=px =)=

. B + x A B + + » 1 I=—fletxy
. P y C O M P S S I n t e g ra t e This is one of the classic ms in non-linear differential equations. It exhibits a range of
compl ors as t

-lir
meters (o, 8, p) are varled, Including what are known as chaotic

with Jupyter notebook - Jupyter e —

* Runsin parallel in Voo
local node and can S I .
offload tasks to external ey 2
nodes

Run some Python
m In [)= l:d\:;lur.'.i.h inline
Hus rortie

ooy — =
Bermn fen wewl s S e i import matplotlib

Installation

Release 2.2 — December 2017
OVA available in downloads with all software installed and examples

Installation manual:
e http://compss.bsc.es/releases/compss/latest/docs/COMPSs_Installation_Manual.pdf

Source code:
e http://compss.bsc.es/ (Downloads Section — Source)

Packages and repositories:
e http://compss.bsc.es/ (Downloads Section — Repository references)
e Debian based: apt-get install compss-framework
e Zypper based: zypper install compss-framework
* Yum based: yum install compss-framework

Supercomputers:
e S wget http://compss.bsc.es/repo/sc/stable/COMPSs_2.0.tar.gz
e S tar-xvzf COMPSs_2.0.tar.gz
* Scd COMPSs
e S ./install <targetDir>
Pip:
* sudo -E pip install compss —v
e source /etc/profile.d/compss.sh

B roourmmatien
BEmgr
Bermn fen wewl s S e i

56

Additional Notes

* Project page:
e http://www.bsc.es/compss

e Direct downloads page:
e http://www.bsc.es/computer-sciences/grid-computing/comp-

superscalar/download
e Virtual Appliance for testing & sample applications

e Tutorials
* Red-Hat & Debian based installation packages
* Source Code

e Application Repository
e http://compss.bsc.es/projects/bar/wiki/Applications
» Several examples of applications developed with COMPSs

B roourmmatien
Bermn fen wewl s S e i

57

? sxmo
[Centm Nacional de Supsrcompuracion

Thank you

For further information please contact
daniele.lezzi@bsc.es

